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In order to predict response and wake modes for elastically mounted circular cylinders
in a fluid flow, we employ controlled-vibration experiments, comprised of prescribed
transverse vibration of a cylinder in the flow, over a wide regime of amplitude and
frequency. A key to this study is the compilation of high-resolution contour plots of
fluid force, in the plane of normalized amplitude and wavelength. With such resolution,
we are able to discover discontinuities in the force and phase contours, which enable us
to clearly identify boundaries separating different fluid-forcing regimes. These appear
remarkably similar to boundaries separating different vortex-formation modes in the
map of regimes by Williamson & Roshko (J. Fluids Struct., vol. 2, 1988, pp. 355–381).
Vorticity measurements exhibit the 2S, 2P and P + S vortex modes, as well as a
regime in which the vortex formation is not synchronized with the body vibration. By
employing such fine-resolution data, we discover a high-amplitude regime in which
two vortex-formation modes overlap. Associated with this overlap regime, we identify
a new distinct mode of vortex formation comprised of two pairs of vortices formed
per cycle, where the secondary vortex in each pair is much weaker than the primary
vortex. This vortex mode, which we define as the 2POVERLAP mode (2PO), is significant
because it is responsible for generating the peak resonant response of the body. We
find that the wake can switch intermittently between the 2P and 2PO modes, even as
the cylinder is vibrating with constant amplitude and frequency. By examining the
energy transfer from fluid to body motion, we predict a free-vibration response which
agrees closely with measurements for an elastically mounted cylinder. In this work, we
introduce the concept of an ‘energy portrait’, which is a plot of the energy transfer into
the body motion and the energy dissipated by damping, as a function of normalized
amplitude. Such a plot allows us to identify stable and unstable amplitude-response
solutions, dependent on the rate of change of net energy transfer with amplitude (the
sign of dE∗/dA∗). Our energy portraits show how the vibration system may exhibit a
hysteretic mode transition or intermittent mode switching, both of which correspond
with such phenomena measured from free vibration. Finally, we define the complete
regime in the amplitude–wavelength plane in which free vibration may exist, which
requires not only a periodic component of positive excitation but also stability of the
equilibrium solutions.

† Email address for correspondence: cw26@cornell.edu
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1. Introduction
Vortex-induced vibration is an important problem in many fields of engineering.

It affects the dynamics of riser tubes bringing oil from the seabed to the surface,
as well as civil engineering structures such as bridges, chimneys and buildings, and
is cause for concern in many other practical applications. The range of problems
caused by vortex-induced vibration has led to a large number of experimental and
computational studies on the subject, including several review papers, for example
Sarpkaya (1979), Griffin & Ramberg (1982), Bearman (1984), Parkinson (1989) and
more recently Williamson & Govardhan (2004).

We focus on one of the most conceptually simple instances of vortex-induced
vibration: the case of an elastically mounted rigid cylinder, constrained to move
transverse to an incoming flow, which is often used as a paradigm for understanding
more diverse experimental arrangements. For such an arrangement, previous studies
(such as Khalak & Williamson 1999) have shown that for systems of low combined
mass damping there exist three branches of response as the normalized velocity
is increased, namely the initial branch, the upper branch and the lower branch.
The transition between the initial and upper branches exhibits a hysteresis, while the
transition from the upper branch to the lower branch shows an intermittent switching.
For systems of high mass damping, only the initial and lower branches exist, with a
hysteretic mode transition between them (Feng 1968). Examples of the two-branch
and three-branch responses may be found later in this work (see figure 11).

In the present study, we employ controlled vibration of a body in a water channel
flow, where the cylinder is effectively translated with a prescribed sinusoidal trajectory
relative to the fluid, to provide a deeper understanding of vortex-induced vibration
phenomena for freely vibrating bodies. Initially, we set out to investigate a number
of questions, such as the following. What is the cause of the hysteresis between the
initial branch and upper branch of response? What causes intermittent switching
between the upper and lower branches? What modes of vortex formation can cause
vortex-induced vibration? What is the relationship between the modes of vortex
formation and the fluid excitation? To what extent can controlled vibration be used
to accurately predict the behaviour of a freely vibrating cylinder? We address all of
these questions in the present work, as well as expand upon the new results which
will be presented.

Before addressing the above questions, we shall briefly introduce an equation
of motion generally used to represent the vortex-induced vibration of a cylinder
oscillating in the transverse y direction (perpendicular to the free stream) as follows:

mÿ + cẏ + ky = F (t), (1.1)

where m is the total oscillating structural mass; c is the structural damping; and k is the
spring constant. When the body motion is synchronized with the vortex formation,
the cylinder motion y(t) and fluid forcing F (t) are typically well approximated
by sinusoidal functions (of course, in controlled vibration, the motion is precisely
sinusoidal):

y(t) = A sin (2πf t), (1.2)

F (t) = F1 sin (2πf t + φ), (1.3)

where f is the oscillation frequency. The phase angle φ between the fluid force and
the body displacement is an important quantity, influencing the energy transfer from
fluid to body motion and thereby also the response of the body. In this problem, we
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Table 1. Non-dimensional groups: U is the free-stream velocity; λ is the oscillation wavelength;
f is the oscillation frequency; fN is the natural frequency in water; D is the cylinder diameter;
L is the submerged cylinder length; ν is the fluid kinematic viscosity; ρ is the fluid density;
and F is the transverse fluid force. The added mass mA is given by mA = CAmd , where md is
the displaced-fluid mass and CA is the potential added-mass coefficient (CA = 1.0 for a circular
cylinder).

select a set of relevant non-dimensional parameters, which are presented in table 1.
In particular, the principal parameters defining the body motion are the normalized
amplitude (A∗) and the frequency ratio (f ∗) in a flow with normalized velocity U ∗.
(In the definition of natural frequency fN used in table 1, we have chosen to use
the frequency in the fluid medium of interest (in this case water), which introduces
(m∗ + CA) in (1.4) and (1.5) below in place of m∗ alone which we would find if we
had chosen to use natural frequency in vacuo.)

Equations defining the amplitude and frequency of the steady-state response may
be derived as follows, following the approach of Khalak & Williamson (1999):

A∗ =
1

4π3

CY sinφ

(m∗ + CA) ζ

(
U ∗

f ∗

)2

f ∗, (1.4)

f ∗ =

√
m∗ + CA

m∗ + CEA

. (1.5)

where CA is the potential added-mass coefficient (CA =1.0 for a circular cylinder) and
CEA is an ‘effective’ added-mass coefficient due to the transverse force in phase with
the body acceleration,

CEA =
1

2π3

CY cos φ

A∗

(
U ∗

f ∗

)2

. (1.6)

We refer to (1.4) and (1.5) as the ‘amplitude equation’ and the ‘frequency equation’
respectively.

We may also discuss the response equations above in the context of energy
considerations. The energy transferred from the fluid to the cylinder motion, over one
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cycle of oscillation, is given by

EIN = πAF1 sin φ. (1.7)

Thus, the phase angle, φ, must be between 0◦ and 180◦ to yield positive excitation,
and this is a required condition for free vibration to occur. We may note
that for a cylinder with prescribed sinusoidal motion, the fluid forcing may
be close to (but not precisely) sinusoidal. If we represent the fluid forcing as
F (t) = {F1 sin (ωt + φ) + F2 sin (2ωt + φ2) + · · ·}, then the force component we present
in this paper is the one corresponding to the fundamental frequency (ω) given by the
magnitude (F1) and the phase (φ). Only this component will make a net contribution
to the energy transfer from fluid to body motion. In essence, (1.7) is valid even for
non-sinusoidal forcing. The energy dissipated by the structural damping is given by

EOUT = 2π2cA2f. (1.8)

If the system is oscillating with a constant amplitude and frequency, the energy into
the system must exactly balance the energy out of the system, over one cycle, which
yields

CY sinφ

︸ ︷︷ ︸
E∗

IN

=
4π3A∗ (m∗ + CA) ζ(

U ∗

f ∗

)2

f ∗

︸ ︷︷ ︸
E∗

OUT

, (1.9)

which is equivalent to a simple manipulation of the amplitude equation (1.4) above.
The term CY sinφ is the force coefficient in phase with velocity, which we define as the
‘fluid excitation’, and this represents a normalized energy into the system, E∗

IN , over
a cycle. For a free-vibration system oscillating at steady state this must be balanced
by the normalized energy out of the system, E∗

OUT , related to the combined mass
damping of the system and given by the right-hand side of (1.9). The combined mass
damping (m∗ + CA)ζ is a key parameter in vortex-induced vibration, as indicated by
its appearance in the amplitude equation (1.4).

Our approach, in this study, is to prescribe the ‘relative’ trajectory of the cylinder
through the fluid to be a sine wave and to measure the fluid forces over a wide range
of normalized amplitude (A∗) and normalized wavelength (λ∗). One may note that
normalized wavelength is equivalent to the parameter U ∗/f ∗ = U/f D, which is the
flow velocity normalized with the actual oscillation frequency (f ), rather than the
natural frequency (fN ). We shall use these force measurements, along with (1.9), to
make response predictions for a freely vibrating cylinder.

In the case of a controlled body, which is translated along a sinusoidal trajectory,
Williamson & Roshko (1988) observed a set of different vortex-formation modes,
existing within certain regimes in a plot of normalized amplitude and wavelength of
the body motion. Among the vortex-formation modes they found were a ‘2S’ mode
representing two single vortices formed per cycle, a ‘2P’ mode meaning two pair of
vortices formed per cycle and an asymmetric ‘P + S’ mode comprised of a pair of
vortices and a single vortex, in each cycle. The Williamson–Roshko map of regimes is
shown, for example, in figure 3(b) later. Ongoren & Rockwell (1988) observed some
comparable vortex-formation modes, in the case of a body oscillating in-line with the
flow.

In the case of free vibration at high mass damping, Brika & Laneville (1993) found
a two-branch response, observing the 2S mode in their initial branch and a 2P mode
in their lower branch, which corresponded well with the Williamson–Roshko map
of mode regimes. At low mass damping, Khalak & Williamson (1999) were able
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to superpose their free-vibration response branches on to the map of wake modes,
deducing that the initial branch lies in the 2S region, while the upper and lower
branches both lie in the 2P region. These modes were confirmed in free vibration by
Govardhan & Williamson (2000), employing simultaneous force and wake-vorticity
measurements. However, they found that the 2P mode in the upper branch exhibits
a secondary vortex in each vortex pair that is much weaker than the primary vortex.
This is significant to the discovery, in the present work, of the ‘2PO ’ mode.

Several previous controlled-vibration studies exist in the literature. Bishop & Hassan
(1964), Mercier (1973), Sarpkaya (1977) and Carberry, Sheridan & Rockwell (2001,
2005) measured the fluid forcing on a vibrating cylinder, over a range of frequencies
and at selected fixed values of amplitude (which we shall call ‘amplitude cuts’). A
significant result from these prior studies (see in particular the early work of Bishop
& Hassan 1964) is the existence of a distinct jump in the phase and magnitude
of the lift force as the frequency is increased through the natural vortex-shedding
frequency for a stationary cylinder. In their controlled-vibration studies, Carberry
et al. (2001, 2005) have shown that this jump is associated with a change from a
‘low-frequency wake state’ (equivalent to the 2P mode) to a ‘high-frequency wake
state’ (equivalent to the 2S mode). This confirms the free-vibration studies of Brika
& Laneville (1993) and Govardhan & Williamson (2000) and the earlier suggestion
of Williamson & Roshko (1988) that these jumps correspond to a change from the
2P mode to the 2S mode, or vice versa. Carberry, Sheridan & Rockwell (2003) have
also identified an ‘intermediate wake state’, equivalent to the upper-branch 2P mode
found by Govardhan & Williamson (2000).

Contour plots of lift force have been generated by Staubli (1983), from his
controlled-vibration experiments, and he used these contours to make predictions
of the response of a free-vibration system that he compared with the free-vibration
measurements of Feng (1968), at high mass damping. The prediction was reasonable
for lower values of the normalized velocity (in what we call the initial branch), but
such comparison was not close for higher U ∗ (the lower branch). The most extensive
previous force-contour measurements come from experiments conducted in the MIT
Towing Tank facility, presented in Gopalkrishnan (1993) and in Hover, Techet &
Triantafyllou (1998). They compiled force coefficients in phase with velocity (CY sinφ)
and in phase with acceleration (CY cos φ), over a wide range of normalized amplitude
and wavelength. Hover et al. (1998) were also able to run ingenious virtual free-
vibration experiments in the same facility, using their ‘virtual cable testing apparatus’.
Their zero-fluid-excitation contour (CY sinφ = 0) yielded reasonable agreement with
one of their (virtual) free-vibration responses, at very low mass damping. However,
some portions of the free-vibration response were situated in regions in which the
force contours from controlled vibration predicted negative excitation.

Two recent numerical studies (by Leontini and co-workers at Monash University
and Willden and co-workers at Imperial College) have investigated the modes
of vortex formation and contours of energy transfer for low Reynolds numbers,
Re =50–300. In the first study, Leontini et al. (2006b) employed two-dimensional
numerical simulations and found no discernible change of vortex wake mode as the
energy transfer (from fluid to body motion) changed sign from negative to positive.
Interestingly, they found that the P + S vortex wake mode could exhibit a small
regime of positive excitation. The complex picture of energy-transfer contours and
modes is also influenced by the Reynolds number. In a separate paper, Leontini
et al. (2006a) noted that experimental work had been unable to capture all the
characteristics of vortex-induced vibration, especially the energy transfer. Numerical
predictions of response, based on a driven vibration study, were close to simulated
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Figure 1. Grid resolution of controlled-vibration measurements from previous studies and in
the present study. We are able to obtain a very high resolution, as well as a wide range of the
parameters.

free-vibration response for the Reynolds number of 200, in the two-dimensional
laminar vortex-formation regime. In the second study, Willden, McSherry & Graham
(2007) reported an ongoing study at Re =100 and 300, which so far has shown that the
zero-energy-transfer conditions correspond closely with the amplitude-response plots
of low damped experiments and simulations. They have employed two-dimensional
and three-dimensional computations to determine conditions at which different vortex
wake modes occur.

One important question, mentioned earlier, is to what extent can measurements from
controlled vibration be applied to the case of a freely vibrating, elastically mounted
cylinder? Carberry et al. (2004), using constant-amplitude experiments, compared
forces and wake modes found for controlled vibration and for free vibration, finding
some similar wake modes and jumps in the force and its phase. However, they also
measured regimes of negative excitation from controlled vibration (suggesting that
free vibration should not occur) under conditions at which free vibration has been
readily found. They concluded that sinusoidal controlled motion ‘does not simulate
all the key components of the flow-induced motion’. This seems reasonable based on
the results that were available at the time from different facilities or groups. However,
Morse & Williamson (2006) made direct comparisons between free and controlled
vibrations and showed that if the experimental conditions are matched, controlled
vibration can yield fluid forces which are in very close agreement with results from
free vibration, over an entire response plot. It is possible that this careful matching
of conditions is a key point in these studies. In this paper, we shall present further
amplitude-response predictions, using our controlled-vibration force contours, which
are in close agreement with measured free-vibration response, at both high and low
mass damping. This indicates that the use of controlled vibration is indeed quite
reasonable to predict free-vibration response.

In this work, we measure the fluid forcing for a cylinder oscillating under controlled
vibration over an extensive range of normalized amplitude and wavelength, with much
higher resolution than in previous data sets, as indicated by figure 1. The use of almost
6000 runs leads to sufficiently fine resolution to allow a study of distinct fluid-forcing
regimes, some of which overlap and lead to phenomena we shall discuss later in § 6.
Over this wide regime of amplitude and wavelength, we present selected examples
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of the vorticity dynamics associated with certain vortex modes in the wake, using
digital particle image velocimetry (DPIV) measurements. The force measurements are
used to predict the behaviour of a freely vibrating cylinder and to explain the mode
transitions which occur between different branches of response.

Following a description of the experimental details in § 2, we introduce a set of
regimes of vortex formation in § 3, which we have been able to identify from the
fluid-forcing measurements. In particular, in this section, we present the overlap
regime associated with the 2PO vortex-formation mode, which is significant because
this mode is responsible for yielding a positive excitation at the highest amplitude
and so would be associated with the peak-amplitude response in free vibration. In § 4,
we present contours of the fluid forcing obtained from our high-resolution data and
explore the relationship between the fluid excitation and the vortex-formation mode,
particularly for our comparison between the 2PO and 2P modes. In an earlier short
paper (Morse & Williamson 2009a) we have presented selected force-contour plots, as
found here, but we have included several other such plots in a more complete set, for
reference {CY , φ, CY sin φ, CY cos φ, Cvortex , φvortex }. The last two parameters refer to
‘vortex-force’ magnitude and phase. Also, in this earlier publication, we have studied
the force time traces and force spectra as one moves across various boundaries of the
fluid-force regimes to further characterize such regimes.

In § 5 of this paper, we use our force contours to accurately predict the response
of a freely vibrating cylinder, demonstrating good agreement between prediction
and direct free-vibration measurements. The introduction of energy portraits in § 6,
illustrating the excitation energy and energy dissipated by damping, as a function
of amplitude, enables us to further understand the existence of hysteresis between
modes of vibration, as well as intermittent switching between modes. The energy
portraits enable us to illustrate clearly the stability and instability of equilibrium
amplitude solutions, predicted from the force-contour data. In § 7, employing the
finely resolved force contours, we have been able to identify the regime within the
amplitude–wavelength plane for which free vibration is possible, taking into account
stability of the possible vibration solutions. This is followed by our conclusions
in § 8.

2. Experimental details
The present experiments were conducted in the Cornell-ONR Water Channel,

which has a cross-section 38.1 cm wide and 50.8 cm deep. The turbulence level
in the test section of the water channel is less than 0.9 %. We match very closely
the experimental arrangement used in the free-vibration study of Govardhan &
Williamson (2000) with our controlled-vibration arrangement here. In both cases a
circular cylinder is suspended vertically in the water channel and oscillated transverse
to an incoming flow, as shown schematically in figure 2. The only difference is that in
the free-vibration case, the cylinder is attached to a spring-mounted carriage running
on air bearings, which oscillates freely, transverse to the flow, due to vortex-induced
motion. In the controlled-vibration case, the cylinder is mounted on a transverse lead
screw attached to a computer-controlled motor, and it oscillates with a prescribed
sinusoidal motion.

We use a test cylinder of diameter 3.81 cm and submerged length 38.1 cm with
the flow speed kept constant to give a Reynolds number Re = 4000. In the appendix,
we also show results for Re = 12 000, obtained using a larger cylinder of diameter
6 cm and length 42 cm with a higher flow velocity. A fixed end plate is placed 2 mm



12 T. L. Morse and C. H. K. Williamson

Cylinder

Carriage

Force 

balance

Air bearings
Springs

Carriage

Cylinder

Force 

balance

Motor

Transverse 

lead screw

End plateEnd plate

Top

view

Front

view

Free vibration Controlled vibration

Figure 2. Schematic diagram of the experimental arrangement which is closely matched to
the arrangement for free vibration. In both cases the cylinder is suspended vertically in a water
channel and oscillates transverse to the flow (into the page). For the controlled-vibration case
we prescribe the motion using a computer-controlled motor and lead screw.

below the bottom of the cylinder (but not in contact with the cylinder) to encourage
two-dimensional vortex shedding, following the study of Khalak & Williamson (1996).
For each Reynolds number, we carry out a total of 5680 runs, each for 100 cycles
of oscillation, to yield a total of approximately 1000 h worth of data. Normalized
amplitude (A∗) is varied from 0.02 to 1.6, with a resolution of 0.02. Normalized
wavelength (λ∗) is varied from 2 to 16, with a resolution of 0.2. Such an extensive
data set is only possible because the experiment is conducted in a continuously flowing
water channel facility, rather than a towing tank facility, and thus can be automated
to run unattended for a large number of experimental runs, often overnight.

A two-axis force balance utilizing linear variable differential transducers (LVDTs) is
used to measure the lift and drag forces on the cylinder. The transverse displacement
of the cylinder is measured using a non-contact (magnetostrictive) position transducer.
For each run, the fluid-force magnitude (F1) and phase angle (φ) at the fundamental
(body-oscillation) frequency are calculated using a Fourier-series analysis. Relevant
fluid-forcing quantities, such as CY sinφ and CEA, are obtained using just the force
component at the body-oscillation frequency. In most cases, the fluid forcing is quite
sinusoidal and thus represents essentially all of the force signal content. In particular,
the fluid forcing is less sinusoidal in the coalescing 2S mode, or the C(2S) mode,
regime and desynchronized wake regime, as might be expected. This is expanded
upon in Morse & Williamson (2009a).
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In addition to the extensive force measurements described above, we use DPIV to
measure vorticity in the wake of the vibrating cylinder, for the case of Re = 4000.
The flow is seeded with 14 μm silver-coated glass spheres, which are illuminated by
a sheet of laser light from a 50 mJ Nd:Yag pulsed laser. Pairs of particle images are
acquired using a Jai CV-M2CL CCD camera (1600 × 1200 pixels) and analysed using
cross-correlation of sub-images. We use a two-step windowing process (with window
shifting) to obtain particle displacements between image pairs. Further details on our
DPIV processing may be found in Govardhan & Williamson (2000). The viewing
area is 26 × 34 cm2, corresponding to 6.75 × 9 diameters. The time between images
is adjusted to vary between 10 and 20 ms depending on the cylinder-oscillation
parameters. Vorticity fields calculated from the image pairs are phase averaged over
approximately 10–20 cycles to remove the small weak-vorticity structures generated
by intermittent small-scale three-dimensionality in the flow and thus obtain a clear
picture of the dynamics of the principal spanwise vorticity.

3. Regimes of fluid forcing and vortex-formation modes
Employing our controlled-vibration data, we are able to identify conditions at which

the fluid forcing shows qualitative abrupt jumps, as amplitude or frequency is varied,
similar to the jumps found in the ‘amplitude cuts’ of previous controlled-vibration
studies. We follow these jumps throughout the normalized amplitude–wavelength
plane and are able to identify clear boundaries separating regions of distinct fluid
forcing, indicated by the coloured regimes in figure 3(a). These boundaries show a
remarkable similarity to the boundaries separating different vortex-formation modes
in the map of Williamson & Roshko (1988), shown in figure 3(b), which were identified
by (fine-resolution) flow-visualization observation of the flow patterns. We naturally
expect that the regions found here, based solely on the fluid forcing, will correspond
with similar modes of vortex formation found by Williamson & Roshko (1988).

By measuring the wake vorticity at certain locations in the amplitude–wavelength
plane, we confirm the existence of certain modes of vortex formation that are labelled
for each fluid-forcing regime in figure 3. The P+S, 2S and 2P modes are presented in
figures 4(a)–4(c). The 2S and 2P modes may be compared with such vortex modes
from free vibration in Govardhan & Williamson (2000). Added to these classical
modes, we have been able to identify a distinct new mode of vortex formation (2PO

mode), existing in its own clearly defined region of the amplitude–wavelength plane,
overlapping the boundary between the 2S and 2P regions. Vorticity measurements
of this mode reveal that although there are two pairs of vortices shed per cycle
of vibration, the secondary vortex in each pair is much weaker than the primary
vortex and decays rapidly as the vortex pair moves downstream, as shown in figure
4(d ). This is in contrast with the classical 2P mode in figure 4(c), where the primary
and secondary vortices in a vortex pair have roughly equal strength (Govardhan &
Williamson 2000). We label this new mode as ‘2POVERLAP ’ or simply ‘2PO ’. We find
significant overlapping regimes, in figure 3, where the wake can switch intermittently
between the 2PO and 2P modes (or between the 2PO and 2S modes), even if the
cylinder is vibrating with steady amplitude and frequency.

The identification of this distinct 2PO mode allows us to clarify the vortex-formation
mode for the upper and lower branches in a free-vibration response. Our initial
interpretation of the results of Govardhan & Williamson (2000) was that the 2P
mode they found for the upper branch of response, which exhibited a much smaller
secondary vortex (as for the 2PO mode), was the same mode essentially as the 2P
mode in the lower-amplitude branch but was simply affected in its configuration
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Figure 3. Map of vortex-shedding regimes. There is a remarkable similarity between the
mode boundaries we have identified in the present study from force measurements in (a)
and the boundaries identified by Williamson & Roshko (1988) from flow visualization in (b).
Overlapping colours indicate regions in which two vortex-shedding modes overlap.
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Figure 4. Vorticity fields for each of the main vortex-shedding modes {P + S, 2S, 2P, 2PO}.
We observe a switch in timing of the initially shed vortex from the 2S mode to the 2P mode.
In all cases the vorticity field is phase averaged over 20 cycles of oscillation; contour levels
shown are ωD/U = ±0.4, ±0.8, ±1.2, . . . . Measurement locations in the amplitude–wavelength
plane are as follows: P+ S mode, (A∗ = 1.2, λ∗ = 4.0); 2S mode, (A∗ =0.5, λ∗ = 5.0); 2P mode,
(A∗ = 0.6, λ∗ = 6.4); 2PO mode, (A∗ = 0.8, λ∗ = 5.6).

by an increase in amplitude. The present work clearly shows that the existence of
the 2PO mode is not simply an amplitude effect, but instead it is a mode that is
quite distinct from the 2P mode, existing at the same amplitude and wavelength.
The concept of an overlap region could not be discovered from free vibration,
because the 2P and 2PO modes yield different values of the fluid excitation and thus
cannot sustain free vibration at the same amplitude level. This is further discussed
in § 6.

In addition to the principal four modes of vortex formation shown in figure 4,
namely the set {2S, 2P, 2PO , P+S}, we also find a region in which the wake is not
synchronized with the cylinder oscillation, at high normalized wavelength (the brown
shaded region in figure 3), and a region in which a 2S mode initially forms behind the
cylinder, but the vortices coalesce downstream, at low normalized wavelength, called
the C(2S) mode in figure 3. Finally, there is a small band in which the desynchronized
wake region overlaps with the 2P mode, in which the wake will switch intermittently
between these two conditions. The desynchronized wake mode, and the C(2S) mode,
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are characterized using detailed force time traces and spectra in Morse & Williamson
(2009a).

In this study, the existence of an overlapping mode is significant because it is
associated with the maximum amplitude at which one experiences positive excitation.
It will thus be the mode yielding the peak resonant amplitude in free vibration. We
shall also see that as a result of the fact that the 2PO mode overlaps other regimes, the
possible mode jumps and interplay between the modes can become quite complex,
and this will be investigated in § 6.

4. Contours of fluid excitation and effective added mass
Although we may present several useful fluid-forcing quantities in a set of contour

plots, we choose in this paper to focus on the two most relevant quantities for the
prediction of free-vibration responses, namely the fluid excitation (CY sinφ) shown
in figure 5 and the effective added-mass coefficient (CEA) shown in figure 6. The
fluid excitation primarily affects the amplitude of vibration (A∗), as shown in the
amplitude equation (1.4) above. On the other hand, the effective added mass (CEA)
affects primarily the frequency of vibration (f ∗), as shown in the frequency equation
(1.5), and will be of use in predicting response in § 5. We also include here a related
plot in figure 7, in the amplitude–wavelength plane, of lines for which the normalized
velocity (U ∗) is a constant. We shall use this plot extensively in § 6 to show how
the energy transfer into the body motion varies as a function of amplitude, for fixed
values of the normalized velocity, U ∗.

The regions of positive fluid excitation (which is necessary for free vibration to
occur) exist within the 2S, 2P, 2PO and desynchronized regimes that are shown
in figure 5. In fact, it is significant that the highest amplitude for which there is
positive fluid excitation lies in a 2PO overlap region. In this region, the wake may
intermittently switch between a 2PO mode of vortex shedding, which will yield a net
positive excitation, and a 2P mode of vortex shedding, which will yield a net negative
excitation, as shown in the time trace of the instantaneous rate of energy transfer (i.e.
power) in figure 8. This means that for the conditions shown in figure 8 (A∗ = 0.8,
λ∗ = 5.4), free vibration could occur only if the mode of vortex formation is 2PO . If the
mode of vortex formation were to switch to the 2P mode, the fluid excitation would
become negative, and the amplitude would drop until the fluid excitation becomes
positive for this 2P mode (A∗ below about 0.56) or until the vortex formation possibly
switches back to the 2PO mode. This switching of vortex-formation modes is what
leads to the intermittent switching between the upper branches and lower branches
of a free-vibration response, as explained in more detail in § 6.

In order to better understand the difference between the 2PO and 2P vortex-
formation modes, we shall briefly introduce the concept of a ‘vortex force’. Following
the analysis of Lighthill (1986) and Govardhan & Williamson (2000), we decompose
the total transverse fluid-force coefficient (CTOT ) into a ‘potential-force’ component
(CPOT ), given by the potential added-mass force, and a ‘vortex-force’ component
(CVORT ), due to the dynamics of vorticity. For sinusoidal body motion, the potential-
force coefficient can be calculated to be

CPOT (t) = 2π3 y(t)/D

(U ∗/f ∗)2
. (4.1)

Thus we see that the instantaneous potential added-mass force CPOT is always in
phase with the cylinder motion, y(t), as one might expect. The vortex-force coefficient
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can then be found by subtracting the potential-force coefficient from the total force
coefficient:

CVORT (t) = CTOT (t) − CPOT (t). (4.2)
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So that we may further illustrate the difference between the 2PO and 2P vortex
modes, we show force time traces and wake-vorticity fields for each mode, taken
during a single experimental run, shown in figure 9. The timing of vortex shedding
is quite similar for the two cases even though the 2PO mode shows a much weaker
secondary vortex. Thus the phase of the vortex force (see time trace for CVORT in
figure 9) is similar for the two cases; however, the magnitude of the vortex force is
much lower for the 2PO mode than for the 2P mode. Therefore, when we superpose
the potential force (which will be the same for both modes since the motion is the
same) on to the vortex force to yield the total force (CTOT ), we find almost a 180◦

switch in phase angle for the 2PO mode. The 2PO mode then delivers a positive
energy transfer into the body motion, while the 2P mode generates negative energy
transfer.

For high amplitudes (A∗ = 0.80), as in the example above, the 2P mode of vortex
formation yields negative excitation and thus cannot sustain free vibration. However,
at amplitudes below about 0.6, the fluid excitation for the 2P mode becomes positive.
One might ask how the wake vortex dynamics change to accomplish this? As the
transverse amplitude is decreased within the 2P region, the wake becomes narrower,
as shown in figure 10. In addition, the timing of vortex shedding shifts slightly. Even
this small change in timing, as the amplitude (A∗) falls below 0.6, is sufficient to alter
the vortex phase to cause a switch from negative excitation to positive excitation;
in essence, there is no dramatic change in the vortex-formation pattern, as energy
transfer becomes positive.
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5. Prediction of a free-vibration response
The availability of our high-resolution force contours now enables us to predict

the response of a freely vibrating cylinder, using (1.4) and (1.5). We are required to
set the system parameters {m∗, ζ, U ∗} and then to solve for the response parameters
{A∗, f ∗}. We have measured the fluid-forcing quantities {CY sinφ, CEA} as functions
of A∗ and λ∗ or equivalently as a function of A∗ and f ∗, if one fixes the normalized
velocity, U ∗. Thus we can simply solve numerically for amplitude (A∗) and frequency
(f ∗) and build up an entire response plot at a given m∗ and ζ as one varies U ∗.

A simpler way to understand this process is to combine the frequency equation
(1.5) and the amplitude equation (1.4), to give an equation with only the combined
mass damping on the left-hand side:

(m∗ + CA)ζ =
CY sin φ

4π3A∗ λ∗2

√
m∗ + CA

m∗ + CEA

, (5.1)

where we have also used U ∗/f ∗ = λ∗. Now, for a given mass ratio, we can plot
contours of the conglomeration of non-dimensional variables on the right-hand side
of (5.1). Each contour will then represent a predicted free-vibration response at a
particular value of the combined mass damping, (m∗ +CA)ζ . The solution for a
system at zero damping will always follow the zero-excitation contour of CY sinφ = 0.
(Note that for a high enough mass ratio, the frequency ratio, f ∗, will be close
to 1, and contours of CEA are not actually needed.) It is important to note that for
reasonable comparisons between predictions and free-vibration experiments, we make
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that the 2PO yields a net positive fluid excitation, while the 2P mode yields negative excitation.

the assumption that damping and stiffness are linear and may be accurately measured
for the free-vibration case. Indeed, in the work of Govardhan & Williamson (2006)
and in several previous papers from the same laboratory, using the same facility, this
was checked thoroughly. The air-bearing damping was very small throughout the
experiments conducted in free vibration; the linearity of the damping in a particular
measurement was indicated by the closely linear form of the logarithmic decay plots
and was generally to the level of 1 % nonlinear. The spring stiffness was very linear,
with nonlinearities amounting to less than 1 % of the stiffness.

With this approach, we are readily able to use our controlled-vibration data to
predict the response of a freely vibrating cylinder, in the examples of figure 11. We
find close agreement with measured free-vibration amplitude response (taken from
Govardhan & Williamson 2006), for both high and low mass damping. To obtain the
complete predicted response plot, we look for solutions in each of the fluid-forcing
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. . . .

regimes identified in figures 5 and 6. For the low-mass-damping case, where we find
a three-branch response, the initial branch lies in the 2S region, the upper branch in
the 2PO region and the lower branch in the 2P region. For the high-mass-damping
case, there are two branches: an initial branch in the 2S region and a lower branch in
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the 2P region. The 2S–2PO and 2PO–2P overlap regions can lead to some interesting
behaviour as we discuss later in § 6.

The agreement between predicted and measured free-vibration responses shown
here is much closer than has been found in previous studies and is only possible
because of the high resolution of our force data and the careful matching of
the experimental arrangement between the controlled and free-vibration cases. The
Reynolds number at peak response was also matched to be equal to 4000 for the
two cases (noting that for the controlled-vibration prediction, Re = 4000 throughout
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the response plot). This match of the Reynolds number is important because the
peak amplitude in the upper branch depends on Re, as explained in Govardhan &
Williamson (2006) and discussed briefly below.

In addition to the fluid-force contours at Re = 4000, we have generated complete
contour plots at Re = 12 000 and show for brevity only one of these plots (for
the excitation energy, CY sinφ), within the appendix. We have been able to predict
complete curves of peak amplitude versus mass damping from the two Reynolds
numbers, using the idea of the ‘modified Griffin plot’ put forward in Govardhan &
Williamson (2006). The agreement with the predictions from the controlled-vibration
contour plots with the free-vibration data is good. We are also able to search for the
peak amplitude A∗

PEAK which is found when one has zero damping, taken from the
point at which the curve for zero excitation energy (CY sinφ = 0) reaches a maximum
for each Reynolds number. A comparison of this predicted peak amplitude, A∗

PEAK ,
with the extensive compilation of peak amplitude from free-vibration data shows
good agreement.

6. Introducing ‘energy portraits’ to understand mode transitions
In the previous section we demonstrated the potential for accurate response

prediction, using our contour plots of force. In this section, we study the transitions
that occur between the different response branches and stability of equilibrium
amplitude solutions, using the concept of an energy portrait.

6.1. Introduction of the concept of an energy portrait

We define an energy portrait as a plot of the energy of excitation (E∗
IN ) and the

energy dissipated to structural damping (E∗
OUT ) as a function of amplitude (A∗)

while keeping the normalized velocity (U ∗) fixed. We use these energy portraits to
determine the stability of equilibrium amplitude solutions and to understand the
mode transitions that occur between branches in free vibration. It is relevant in this
section to refer often to figure 5, where we plot normalized energy of excitation
(CY sinφ) and where the fluid-force regimes, and shapes of the contours, are key to
the energy portraits. (One should note that plots of fluid-force excitation (CY sin φ)
as functions of amplitude were presented as early as Griffin (1980), and as noted by
Bearman (1984) in his review, Griffin’s plot could be used to show that the excitation,
after reaching a maximum, decreased such that there was no excitation beyond an
amplitude of 1.0D–1.5D.) This suggested a limiting displacement for free vibrations.

To demonstrate the usefulness of the concept of the energy portraits, we exhibit one
possible shape which may occur for the fluid-excitation contours in the amplitude–
wavelength plane, in figure 12(a). This particular variation of the excitation energy
would lead to an ‘S-shaped’ curve for E∗

IN in the energy portrait of figure 12(b).
The energy lost due to damping, E∗

OUT , will intersect the origin and have a slope
proportional to the specific value of mass damping (m∗ +CA)ζ . (One may note that
the precise shape of the E∗

OUT curve and the shape of the U ∗ = constant line in
the amplitude–wavelength plane both depend on the frequency ratio, f ∗. In general,
the U ∗ cut will be nearly vertical, in figure 12a, and the E∗

OUT curve will be nearly
straight, in figure 12b. Both lines become straighter as one increases the mass ratio,
and f ∗ ∼ 1.0.) We note here, however, that for very low mass ratios (m∗ order 1 and
lower) the value of f ∗ may depart markedly from 1, and the U ∗ = constant contours
may have a more complicated shape. A detailed analysis of vortex-induced vibration
prediction at these low mass ratios forms one part of a subsequent paper (Morse &
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Williamson 2009b). In the present work, we focus on moderate-to-high mass ratios,
in order to clearly present the new concepts introduced.

Steady-state response solutions are found where the energy into the system equals
the energy out of the system. In our example of lower damping, in figure 12(b),
there is one equilibrium point and hence one possible free-vibration amplitude. In
our example of higher damping, in figure 12(c), there exist three equilibrium points,
in other words three response amplitudes. However, only two of these response
amplitudes are stable. The central equilibrium solution is unstable: for example if a
perturbation increases the amplitude slightly, the energy into the system would be
greater than the energy out of the system; the amplitude would continue to increase,
ultimately reaching the upper stable solution. Stability and instability of equilibrium
solutions in the energy portrait can be defined by the slope of the energy curves, at
the equilibrium points, as follows:

stable, dE∗/dA∗ < 0,

unstable, dE∗/dA∗ > 0,

where E∗ is the net energy transfer into body motion, E∗ = E∗
IN −E∗

OUT . Free vibration
would occur at the stable-equilibrium points. In our example, there are two stable
free-vibration amplitudes, which would correspond to two different solution branches
in a complete response plot.

Let us now apply the concept of the energy portrait to our controlled-vibration data
at Re = 4000. We consider a typical mass ratio for systems in water, m∗ = 10, for which
the constant U ∗ lines (or ‘cuts’), in the amplitude–wavelength plane, will be nearly
vertical. We start with a simple case, a cut in this plane for which U ∗ = 7.0. (This cut
may be seen in the amplitude–wavelength plane, in figure 7.) For our chosen values
of mass damping, (m∗ +CA)ζ , in figure 13, there is only one equilibrium solution
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(a stable solution). As the mass damping increases, the equilibrium amplitude (i.e. the
predicted free-vibration amplitude) decreases. At sufficiently high mass damping, no
solution will exist, in this example.

We shall now employ the energy-portrait concept in a more involved case. Let
us consider a cut for which U ∗ = 5.1 in the amplitude–wavelength plane, which we
expect will lead to an initial and an upper branch of free vibration. In this case,
the energy into the system follows an ‘S’ curve, as shown in figure 14, similar to
the example in figure 12, discussed above. The two stable equilibria at low and high
amplitudes will correspond to the initial branch and upper branch of free vibration,
respectively. Of course, the unstable equilibrium will not appear in a free-vibration
response. All three solutions here represent the 2S mode of vortex formation; so this
is an unusual case in which both the initial branch and the upper branch would in fact
show a 2S mode of vortex formation. This unusual case has not been demonstrated
in free-vibration experiments in the literature, as yet. We see from the energy portrait
that under conditions of high mass damping [(m∗ + CA)ζ = 0.15], only one stable
equilibrium exists, corresponding to an initial response branch in free vibration. This
is consistent with experimental measurements from free-vibration results in which the
upper branch disappears, for sufficiently high mass damping.

From the excitation-force contours in figure 5, we note there exists a region in
which the 2S and the 2PO regimes overlap such that the fluid excitation will not be
continuous across this transition. The cut for U ∗ = 5.1 passes through this overlap
region (a similar cut, U ∗ = 5.0, can be seen in figure 7). Therefore the energy portrait
will show a small range of amplitudes in which two possibilities exist for E∗

IN ,
depending on the mode of vortex shedding (2S or 2PO). In figure 15, we now include
this second branch of the excitation energy, corresponding to the 2Po mode (E∗

OUT
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will also be very slightly different for the two modes, but for simplicity we have
kept an average value in this overlap regime). For the higher mass damping chosen
here [(m∗ +CA)ζ = 0.09], three solutions are found as shown earlier in figure 14. For
our lowest selected mass damping here [(m∗ +CA)ζ = 0], the high-amplitude stable
solution would exhibit the 2PO wake mode, in figure 15(a), yielding an upper branch,
as observed typically in free-vibration experiments.

A particularly interesting case occurs if one has an intermediate mass damping
in figure 15(b), since there is no equilibrium point to give a steady upper-branch
amplitude. If the system has an amplitude above 0.6 or so, and we have the 2S mode
of vortex formation, the energy into the system will be greater than the energy lost to
damping, and the amplitude will increase until the system enters the 2PO regime. The
fluid excitation will drop, but it will now fall below the energy dissipated to damping,
causing the amplitude to decrease until the vortex mode jumps back to the 2S mode.



Prediction of VIV response by employing controlled motion 29

0 0.2 0.4 0.6 0.8 1.0

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

A B C D E F G

H

I

Increasing U*

E*

A*

U*

A*

(a)

(b)

4.4 4.8 5.2 5.6
0

0.2

0.4

0.6

0.8

1.0

A
B

C

IHG

F

E

D

Upper branch

Initial
branch

Figure 16. (a) Energy portraits and (b) amplitude response (b) for the hysteresis mode
transition between the initial and upper branches for m∗ = 10; E∗

IN curves are shown for
U ∗ = 4.70, 4.86, 5.05, 5.20 and 5.30; �, stable equilibria; �, unstable equilibria.

In this manner, the cycle will repeat. Thus the normalized amplitude will fluctuate in
an unsteady manner, remaining between about 0.72 and 0.8. This type of behaviour
is actually observed in the free-vibration case, where the upper branch often shows
oscillations that are less steady than found in the initial or lower branches (Khalak
& Williamson 1996).

6.2. Hysteresis between the Initial ↔ Upper branches

In the free-vibration response of Govardhan & Williamson (2006), as shown in
figure 11, there exists a hysteretic mode transition between the initial and upper
response branches, around U * = 5.5. This hysteresis, for such a low-mass-damping
system, can readily be understood, if we employ a set of energy portraits over a small
range of the normalized velocity, as shown in figure 16. For simplicity we will consider
a system with zero damping so that all the equilibria will lie on the horizontal axis.
(Also we will take an average of the fluid excitation in the region in which the 2S
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and 2PO modes overlap, simply to clarify the phenomena and avoid the small cyclic
oscillations we saw in figure 15b.) Depending on the normalized velocity, there may
be one stable-equilibrium solution or two stable solutions plus one unstable solution.
The location of all these equilibrium solutions on a free-vibration amplitude-response
plot are shown in figure 16(b).

We commence with a low velocity U ∗ = 4.70, where only one solution exists,
corresponding to the initial branch, shown as point A in figure 16(b). The reader
should look back and forth between figures 16(a) and 16(b) while we discuss the
hysteresis as follows. As we increase U ∗ to 4.86 and upwards to 5.05, a second
stable-equilibrium point will appear on the upper branch (point G). Nevertheless,
the system will remain on the initial branch (point C). Once the normalized velocity
is increased to 5.20, the initial-branch equilibrium will disappear in a ‘saddle-node
bifurcation’ (point D), and the amplitude will jump to the upper branch (point H).
With further increase in U ∗, the solution simply shifts along the upper branch (to
point I and beyond). However, if the normalized velocity is decreased, the solution
will remain on the upper branch, until that equilibrium disappears in another saddle-
node bifurcation at U ∗ = 4.86 (point F). The amplitude will then drop to the initial
branch (point B), thus completing the hysteresis loop. In summary, the progression
of points for increasing U ∗ is A–B–C–D–jump to H–I. For decreasing U ∗, we have
I–H–G–F–drop to B–A.

In the case of a free-vibration system with high mass damping, there are only
two branches of response: an initial branch and a lower branch, as shown also
in figure 11, with a hysteretic mode transition between them. From the contours
presented here, such a hysteresis would not be predicted. However, Bishop & Hassan
(1964) showed from their controlled-vibration ‘amplitude cuts’ that the location of
the jump in magnitude and phase of fluid forcing (which we now know is due to a
change in vortex-formation mode from 2S to 2P) depends on whether the frequency
of vibration is increasing or decreasing. In our case we do not dynamically vary the
frequency; so we cannot observe any hysteresis in the force contours. We expect that
the precise location of the 2S–2P boundary will shift very slightly if the frequency
(or wavelength) is dynamically increased or decreased and that this shift in the
boundary is what causes the hysteresis between the initial and lower branches of a
high-mass-damping response.

6.3. Intermittent switching between Upper ↔ Lower branches

In the free vibration of figure 11(a), there exists an intermittent switching between
the upper and lower branches at velocities U ∗ ∼ 6. If we look at the energy portrait
for a normalized velocity cut (U ∗ = 6.3) passing through the 2PO–2P overlap region,
there will be two curves of excitation energy E∗

IN , one for the each mode of vortex
shedding, as shown in figure 17. (There will also be two E∗

OUT curves because the
value of CEA and thus f ∗ are slightly different for the two modes. This difference is
extremely small (less than 1 %), and so we show an averaged line for simplicity.)

For low mass damping, as indicated in figure 17, if the vortex-shedding mode is
2PO , then there will be one stable equilibrium at the upper-branch amplitude (around
A∗ =0.8). However, this equilibrium will only persist if the vortex-formation mode
continues to be 2PO . If the wake switches to a 2P mode, the fluid excitation will drop.
This will cause the energy into the system to be less than the energy dissipated by
damping, and therefore the amplitude will decrease until a new stable equilibrium
for the 2P mode is reached, corresponding to a lower-branch amplitude (around
A∗ =0.5). Later in time, the vortex-formation mode could possibly switch back to
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2PO , causing the amplitude to increase back towards the upper-branch amplitude.
In this way, the amplitude could switch intermittently between the upper and lower
branches, sometimes staying at one amplitude or the other for several cycles. This
corresponds to what is actually observed in free-vibration systems, for example in
Govardhan & Williamson (2000).

We emphasize that the switching phenomenon described here is fundamentally
different from the unsteady behaviour which can occur in the 2S–2PO overlap region
described in § 6.1 and shown in figure 15(b). In the 2S–2PO overlap region the variation
in amplitude is much smaller, and no steady motion is possible for either vortex-
formation mode. In the 2PO–2P overlap region, the difference in amplitude is quite
dramatic (appearing as a jump between an upper branch and a lower branch), and
we find steady amplitude motion can occur, so long as the vortex wake mode remains
the same.

7. Defining the regime in which free vibration is possible
The evaluation of fluid forcing, throughout the amplitude–wavelength plane, enables

us to determine the regimes in which free vibration can occur, of course under the
assumption that such motion is approximately sinusoidal. The classical understanding,
presented in figure 18(a), is that the region of possible free vibration is the intersection
of the positive excitation region and the synchronized wake region. However, we have
found, in this paper, that there exist conditions at which, even though the fluid
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Figure 18. Map of where free vibration can occur in the amplitude–velocity plane for m∗ = 10
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which the equilibria are unstable. (c) Region in which positive excitation exists, even with a
desynchronized wake. (d ) Regime of possible free vibration: the fluid excitation is positive,
and the solutions to the equation of motion are stable.

excitation is positive and the equations of motion are satisfied, the equilibrium
solutions are unstable. We therefore remove the area in the amplitude–wavelength
plane, where these solutions are unstable, to yield our regime of possible free vibration,
in figure 18(b).

We may further point out that vortex-induced motion can occur in the
desynchronized region if there is some positive fluid excitation at the oscillation
frequency. The fluid forcing in the desynchronized region has a large component at
the (higher) natural vortex-shedding frequency, but in fact it also exhibits a smaller
force component at the oscillation frequency, as discussed in more detail in Morse &
Williamson (2009a). Thus, one might expect that free vibration in this region would
have distinctly non-sinusoidal motion. However, since the effect of fluid forcing on
vibration amplitude is greatly diminished for frequencies away from the oscillation
frequency, the higher-frequency-forcing component can have a negligible effect on
the overall body dynamics. Therefore, in our search for the regime of possible free
vibration, we add in the region of positive excitation within the desynchronized
regime, in figure 18(c). Finally, we may present the overall regime of possible free
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vibration in figure 18(d ), which satisfies the requirements that not only is the fluid
excitation is positive, but also the amplitude solutions are stable.

8. Conclusions
In this paper, we have presented new measurements of fluid force on a cylinder that

oscillates under controlled vibration, transverse to a flow. We have presented these
new results in the form of high-resolution force-contour plots within the plane of
normalized amplitude and wavelength (A∗, λ∗), for the Reynolds numbers Re = 4000
and Re = 12 000. We have identified distinct boundaries and fluid-force regimes in the
amplitude–wavelength plane, based solely on the force measurements. Indeed, we find
good agreement between the shapes of the regimes evaluated from force measurements
in the present work and the regimes of vortex-formation modes identified from flow
visualization in the map of regimes by Williamson & Roshko (1988). By measuring
the wake vorticity, we find vortex-formation modes that correspond well with those
in the Williamson–Roshko map, namely the 2S and 2P modes, as well as with the
asymmetric P + S mode.

The present high-resolution contour plots have enabled us to discover a new high-
amplitude regime, in the amplitude–wavelength plane, which overlaps the boundary
between the 2S and 2P regimes. Vorticity measurements identify the new vortex-
formation mode to be similar to the 2P mode but where the second vortex of each
pair is much weaker than the first vortex, in what we define as the ‘2POVERLAP ’ or ‘2PO ’
mode. During an experiment, the vortex-formation mode and fluid force can switch
intermittently between the 2PO and 2P modes, even when the amplitude and frequency
are kept constant. The switch in vortex-formation mode can cause a large jump in
the fluid excitation, which would lead to a jump in amplitude for a free-vibration
response, as found in direct measurements on elastically mounted bodies.

Employing the force-contour data, we are able to predict the response of a freely
vibrating cylinder. This prediction agrees well with direct measurements from free-
vibration experiments, for the three-branch response of a low-mass-damping system
and for the two-branch response of a system with high mass damping. We are also
able to accurately recreate the ‘modified Griffin plot’ of peak amplitude versus mass
damping at both Re = 4000 and Re = 12 000 (shown in the appendix), and our data
also agrees well with the plot of peak amplitude as a function of Re, compiled in the
recent work of Govardhan & Williamson (2006).

In order to study the stability of equilibrium amplitude solutions and to better
understand the mode transitions between solution branches of the free-vibration
response, we have introduced the concept of an ‘energy portrait’. We define such an
energy portrait as a plot of the excitation energy into the system and the energy out of
the system dissipated by damping, as a function of amplitude, as we keep normalized
flow velocity constant. The energy portrait allows us to identify equilibrium points,
where there is a balance of energy transfer into the system (E∗

IN ) and out of the
system (E∗

OUT ), and to determine the stability of these equilibrium points, as follows:

stable, dE∗/dA∗ < 0,

unstable, dE∗/dA∗ > 0,

where E∗ is the net energy (E∗
IN − E∗

OUT ) transferred into the body motion.
In the vicinity of the transition between the initial and upper response branches

found in free vibration, for low mass damping, the fluid excitation follows an ‘S-like’
shape, leading to multiple equilibria in the energy portrait. We are able to explain the
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existence of hysteresis, found in free vibration, on the basis of a set of energy portraits,
where we identify saddle-node bifurcations and where we may identify stable and
unstable solutions. On the other hand, the transition from the upper branch to the
lower branch of free-vibration response involves an intermittent switching between
the modes. We may explain this phenomenon by considering the overlap of two
mode regimes in the amplitude–wavelength plane. The vortex formation is able to
switch intermittently as a function of time and induces jumps between two stable
amplitude solutions, one corresponding with the 2PO mode, with higher excitation
energy, and the other corresponding with the 2P mode of vortex formation, with
lower excitation energy. In essence, the hysteresis between modes occurs due to the
shape of the fluid-excitation contours in the amplitude–wavelength plane, while the
intermittent-switching transition occurs because there is an overlap of mode regimes
in this plane.

As a further point, we may clearly define the region in the amplitude–wavelength
plane that would admit free vibration. The requirements for free vibration have
generally been assumed to be a synchronized wake and a positive fluid excitation.
However, through our energy portraits, we have identified a regime for unstable
equilibria where steady free vibration is not possible, which must therefore be removed
from the region of possible free vibration. We should also note that vortex-induced
vibration can occur if there is an area of positive excitation even within the regime
of the desynchronized wake. Therefore, our complete regime for free vibration in the
amplitude–wavelength plane satisfies two principal criteria; namely the existence of
net positive fluid excitation and stability of the equilibrium amplitude solutions.

Finally, we now return to several questions that were posed at the start of the
introduction, and we put forward here some responses to those questions.

(i) What is the cause of the hysteresis between the initial and upper branches of
response? This is related to the fact that the energy portrait exhibits an S-like
shape, yielding multiple solutions, two of which are stable for a particular flow
velocity.

(ii) What causes intermittent switching between the upper and lower branches? We
now understand this as caused by the overlap of two vortex-formation modes for the
same amplitude and wavelength of the body’s vibration, with the possibility that the
wake flow intermittently switches between vortex-formation modes.

(iii) Which modes of vortex formation can cause vortex-induced vibration? Apparently
the modes causing vibration, in this regime of the Reynolds number, are not only the
well-known 2S and 2P modes but also the overlap 2PO mode, discovered in this work.
However, we also predict vibration in the ‘desynchronized’ vortex mode regime.

(iv) What is the relation between the modes of vortex formation and the fluid
excitation? The maps of vortex-induced forces, compiled here, demonstrate clear
regimes and boundaries in the amplitude–wavelength plot, which directly correspond
to the different modes of vortex formation, originally found in the map of Williamson
& Roshko (1988). The positive excitation is observed for the 2S, 2P and 2PO modes
and is found to change sign with only very minor changes to the phase of the fluid
forcing. We also find in this work that the ‘desynchronized’ vortex-formation regime
can still yield net positive excitation and thereby deliver body vibration.

(v) To what extent can controlled vibration be used to accurately predict the behaviour
of a freely vibrating cylinder? Previously there was some debate, for a number of
years, that controlled vibration was not always a good predictor of free vibration.
However, the conclusion here is that so long as the experimental conditions of the
controlled vibration match well those for the free vibration (end conditions, etc.),
and the controlled vibrations are of sufficient high resolution, the prediction can be
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very good. In fact, not only are the steady-state vibrations very well predicted, but
the non-steady and transient vibrations can also be well predicted, and for clarity
and brevity this is presented in a separate and subsequent contribution (Morse &
Williamson 2009b).
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Appendix. The effect of the Reynolds number on the fluid-force contours and
prediction of the ‘modified Griffin plot’

A basic question one might ask is how dependent are the fluid-forcing contours
in the amplitude–wavelength plane on the value of the Reynolds number used for
the plot. We have conducted another complete set of experiments to obtain force
contours at Re = 12 000. We present as an example, in figure 19, contours of the fluid
excitation (CY sinφ). Interestingly, the same fluid-forcing regimes are found for the
Re =12 000 case as we found here for Re = 4000, including the 2PO mode. The general
shape of the fluid-excitation contours is also quite similar, suggesting that the same
general conclusions made in the present paper remain valid over a whole range of
the Reynolds number. One should note that we are not in a position to observe the
P + S regime because the high-amplitude, low-wavelength (high-frequency) region of
the amplitude–wavelength plot (top left corner) exceed the limits of our facilities at
this Re. The major effect of increased Re appears to be a vertical stretching of the 2S
and 2PO regimes. The zero-excitation contour in the 2PO regime has a distinctly higher
amplitude. This means that one expects a higher peak-amplitude response for very
small (or zero) damping as the Reynolds number is increased. On the other hand, the
location of the zero-excitation contour for the 2P region, in the amplitude–wavelength
plane, remains virtually unchanged as the Reynolds number is increased.

It is interesting that, in fact, our controlled-vibration contours at Re = 4000 and
12 000 can also be used to predict the peak-amplitude vibration response as a function
of mass damping, in what is called a modified Griffin plot. Such a plot, which was
presented by Govardhan & Williamson (2006), shows the effect of mass damping,
as well as that of the Reynolds number, on the peak-amplitude response in free
vibration, and involves a collapse of such extensive data into a single curve. Here
we choose to plot the two Reynolds numbers separately to indicate the effect of the
Reynolds number more directly. We can compute these data as curves in figure 20(a),
using the approach of § 5.

For both Reynolds numbers, the controlled-vibration contours yield good
agreement with the empirical formula, taking into account mass damping as well
as the Reynolds number, deduced by Govardhan & Williamson (2006),

A∗ = (1 − 1.2α + 0.30α2) log (0.41Re0.36). (A 1)

The predicted peak amplitude is slightly lower than the measured free-vibration
amplitude for the Re = 4000 case, but the shape of the trend is well predicted. The
agreement with free-vibration peak-amplitude data at Re = 12 000 appears to be good.
We also find the location, in our amplitude–wavelength plane, at which the excitation
energy (CY sin φ) is zero, for both Re = 4000 and Re = 12 000. These values predict
the peak-response amplitude, which could be found in free vibration if the damping is
brought to zero. A subsequent inclusion of our data on to the plot of peak response
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(for zero damping) as a function of the Reynolds number, compiled for free vibration
experiments by Govardhan & Williamson (2006),

A∗
PEAK = log (0.41Re0.36), (A 2)
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A∗ = (1 − 1.2α + 0.30α2) log (0.41Re0.36). (b) Peak amplitude at zero mass damping versus Re
for a wide range of experiments, taken from Govardhan & Williamson (2006); symbols are
given in table 3 of that paper (not reproduced here); ©• , our present predictions from controlled
vibration.

is shown in figure 20(b), indicating good agreement. We should also note that
the peak amplitudes are reasonably independent of blockage in this plot, at
least over the regime of blockage ratios, D/W = 5–15 % (where W =test-section
width).
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